

Mark Scheme (Results)

January 2021

Pearson Edexcel International A Level in Statistics S2 (WST02/01)

https://xtremepape.rs/

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2021 Publications Code WST02_01_2101_MS All the material in this publication is copyright © Pearson Education Ltd 2021

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what

they have shown they can do rather than penalised for omissions.

- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol \sqrt{will} be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected. Ignore wrong working or incorrect statements following a correct answer.

Number	n Scheme				Marks	
1(a)	B(30, 0	.05)			B1	
						(1)
(b)	-		ving/not surviving is constant		B1	
$(-)(\cdot)$		vival of each <u>oyster</u> is indepen	ident of the others			(1)
(c)(i)	${}^{30}C_{24}(0.05)^6(0.95)^{24}$ oe			M1		
		= 0.002708		awrt 0.0027	A1	
(ii)	$P(Y \ge 3)$	$=1-P(Y\leq 2)$ from $Y \sim B(30,$	0.05) or $P(X \leq 27)$ from $X \sim B$	(30, 0.95)	M1	
		= 1 - 0.8122				
		= 0.1878		awrt 0.188	A1	
(1)	A De(10)			D1	(4)
(d)	$\frac{A \sim \text{Po}(A)}{P(A \ge n)}$				B1	
		·	awrt 0.13 or $P(A \ge 7) = 0.8699a$	wrt 0.87	M1	
	n = 7		awit 0.15 01 (<i>N</i> ≥7) = 0.0055a		Alcao)
						(3)
(e)	$H_0: p =$	0.05, $H_1: p > 0.05$			B1	
	Using ($C \sim B(25, 0.05)$ and $P(C \ge 4) \mid U$	Using $D \sim B(25, 0.95)$ and $P(D \le 21)$		M1	
	$P(C \ge C$	$(4) = 0.0341 / CR C \ge 4$ P	$P(D \leq 21) = 0.0341 / CR D \leq 21$		A1	
	Evidence to reject H ₀ , in the CR, significant				dM1	
	There is evidence that the proportion of oysters not surviving has increased (oe)/ Jim's belief is supported.			Alcso	•	
	Dener 18	supported.				(-)
						(5)
					Tota	(5) al 14
			Notes		Tota	
(a)	B1 P1		and $p = 0.05$. Do not allow $p = 0.95$ in			· · ·
(b)	B 1	For either correct assumption in	and $p = 0.05$. Do not allow $p = 0.95$ in context. Ignore extraneous non-contract			· · ·
	B1 M1	For either correct assumption in allow ${}^{30}C_6$ or $P(X \le 6) - P(X \le 6)$	and $p = 0.05$. Do not allow $p = 0.95$ in context. Ignore extraneous non-contract $X \le 5$ with one correct probability			
(b) (c)(i)	B1 M1 A1	For either correct assumption in allow ${}^{30}C_6$ or $P(X \le 6) - P(X \le 6)$ awrt 0.0027 (correct answer sco	and $p = 0.05$. Do not allow $p = 0.95$ in context. Ignore extraneous non-contract $X \le 5$ with one correct probability pres 2 out of 2)	dicting commen	ts.	· · ·
(b)	B1 M1 A1 M1	For either correct assumption in allow ${}^{30}C_6$ oe or $P(X \le 6) - P(X \le 6)$ awrt 0.0027 (correct answer sco Writing/using $1 - P(Y \le 2)$ with	and $p = 0.05$. Do not allow $p = 0.95$ in context. Ignore extraneous non-contract $X \le 5$ with one correct probability pres 2 out of 2) h B(30, 0.05) or writing/using P($X \le 2$	dicting commen	ts.	
(b) (c)(i) (ii)	B1 M1 A1 M1 A1	For either correct assumption in allow ${}^{30}C_6$ oe or $P(X \le 6) - P(X \le $	and $p = 0.05$. Do not allow $p = 0.95$ in context. Ignore extraneous non-contract $X \le 5$ with one correct probability pres 2 out of 2) h B(30, 0.05) or writing/using P($X \le 2$ es 2 out of 2)	dicting commen 7) with B(30, 0	ts.	· · ·
(b) (c)(i)	B1 M1 A1 M1	For either correct assumption in allow ${}^{30}C_6$ oe or $P(X \le 6) - P(X \le 6)$ awrt 0.0027 (correct answer score Writing/using $1 - P(Y \le 2)$ with awrt 0.188 (correct answer score Writing or using Po(10) (sight	and $p = 0.05$. Do not allow $p = 0.95$ in context. Ignore extraneous non-contract $X \le 5$ with one correct probability pres 2 out of 2) h B(30, 0.05) or writing/using P($X \le 2$	dicting commen 7) with B(30, 0 rk)	ts.	· · ·
(b) (c)(i) (ii)	B1 M1 A1 M1 A1 B1	For either correct assumption in allow ${}^{30}C_6$ oe or $P(X \le 6) - P(X \le 6)$ awrt 0.0027 (correct answer score Writing/using $1 - P(Y \le 2)$ with awrt 0.188 (correct answer score Writing or using Po(10) (sight	and $p = 0.05$. Do not allow $p = 0.95$ in context. Ignore extraneous non-contract $X \le 5$) with one correct probability ores 2 out of 2) in B(30, 0.05) or writing/using P($X \le 2$ es 2 out of 2) is of 0.1301 or 0.8699 can imply this mate <7) = awrt 0.13 or P($A > 6$) = awrt	dicting commen 7) with B(30, 0 rk)	ts.	· · ·
(b) (c)(i) (ii)	B1 M1 A1 M1 A1 M1 A1 M1	For either correct assumption in allow ${}^{30}C_6$ oe or $P(X \le 6) - P(X \le $	and $p = 0.05$. Do not allow $p = 0.95$ in context. Ignore extraneous non-contract $X \le 5$) with one correct probability ores 2 out of 2) in B(30, 0.05) or writing/using P($X \le 2$ es 2 out of 2) is of 0.1301 or 0.8699 can imply this mate <7) = awrt 0.13 or P($A > 6$) = awrt	dicting commen 7) with B(30, 0 rk) 0.87	ts.	· · ·
(b) (c)(i) (ii)	B1 M1 A1 M1 A1 M1 A1 A1 A1 A1 A1	For either correct assumption in allow ${}^{30}C_6$ oe or $P(X \le 6) - P(2)$ awrt 0.0027 (correct answer score Writing/using $1 - P(Y \le 2)$ with awrt 0.188 (correct answer score Writing or using Po(10) (sight Allow $P(A < n) < 0.2$ or $P(A - n) = 7$ which must come from us Use of normal approx. with $\mu = 1$	and $p = 0.05$. Do not allow $p = 0.95$ in context. Ignore extraneous non-contract $X \le 5$) with one correct probability ores 2 out of 2) h B(30, 0.05) or writing/using P($X \le 2$ es 2 out of 2) c of 0.1301 or 0.8699 can imply this ma <7) = awrt 0.13 or P($A > 6$) = awrt se of Po(10) or N(10, 9.5)	dicting commen 7) with B(30, 0 rk) 0.87 .can score M1	ts.	· · ·
(b) (c)(i) (ii)	B1 M1 A1 M1 A1 M1 A1 A1 A1 A1 A1	For either correct assumption in allow ${}^{30}C_6$ oe or $P(X \le 6) - P(X)$ awrt 0.0027 (correct answer score Writing/using $1 - P(Y \le 2)$ with awrt 0.188 (correct answer score Writing or using Po(10) (sight Allow $P(A < n) < 0.2$ or $P(A < n) = 7$ which must come from us Use of normal approx. with $\mu =$ Exact binomial gives $P(A \le 6) =$	and $p = 0.05$. Do not allow $p = 0.95$ in context. Ignore extraneous non-contract $X \le 5$) with one correct probability ores 2 out of 2) in B(30, 0.05) or writing/using P($X \le 2$ es 2 out of 2) is of 0.1301 or 0.8699 can imply this material < 7) = awrt 0.13 or P($A > 6$) = awrt es of Po(10) or N(10, 9.5) = 10 and $\sigma^2 = 9.5$ leading to $n < 7.4$	dicting commen 7) with B(30, 0 rk) 0.87 .can score M1 .0	ts.	(5) al 14
(b) (c)(i) (ii) (d)	B1 M1 A1 M1 A1 B1 M1 A1cao Note:	For either correct assumption in allow ${}^{30}C_6$ oe or $P(X \le 6) - P(X \le $	and $p = 0.05$. Do not allow $p = 0.95$ in context. Ignore extraneous non-contract $X \le 5$) with one correct probability ores 2 out of 2) h B(30, 0.05) or writing/using P($X \le 2$ es 2 out of 2) c of 0.1301 or 0.8699 can imply this material <7) = awrt 0.13 or P($A > 6$) = awrt se of Po(10) or N(10, 9.5) = 10 and $\sigma^2 = 9.5$ leading to $n < 7.4$ = 0.14 / P($A \ge 7$) = 0.86 scores B0M0A	dicting commen 7) with B(30, 0 rk) 0.87 .can score M1 .0 $_1: p < 0.95$.95)	al 14
(b) (c)(i) (ii) (d)	B1 M1 A1 M1 A1 B1 M1 A1cao Note: B1	For either correct assumption in allow ${}^{30}C_6$ oe or $P(X \le 6) - P(X \le $	and $p = 0.05$. Do not allow $p = 0.95$ in context. Ignore extraneous non-contract $X \le 5$) with one correct probability ores 2 out of 2) in B(30, 0.05) or writing/using P($X \le 2$ es 2 out of 2) is of 0.1301 or 0.8699 can imply this material <7) = awrt 0.13 or P($A > 6$) = awrt se of Po(10) or N(10, 9.5) = 10 and $\sigma^2 = 9.5$ leading to $n < 7.4$ = 0.14 / P($A \ge 7$) = 0.86 scores B0M0A use of p or π). Allow H ₀ : $p = 0.95$, H sing P($C \ge 4$) or if CR given P($C \ge$	dicting commen 7) with B(30, 0 rk) 0.87 .can score M1 .0 $_1: p < 0.95$.95)	al 14
(b) (c)(i) (ii) (d)	B1 M1 A1 M1 A1 B1 M1 A1cao Note: B1 M1	For either correct assumption in allow ${}^{30}C_6$ oe or $P(X \le 6) - P(2)$ awrt 0.0027 (correct answer score Writing/using $1 - P(Y \le 2)$ with awrt 0.188 (correct answer score Writing or using Po(10) (sight Allow P($A < n$) < 0.2 or P($A - n$ n = 7 which must come from us Use of normal approx. with $\mu =$ Exact binomial gives P($A \le 6$) = Both hypotheses correct (allow u Using B(25, 0.05) and writing/u writing/using P($D \le 21$) or if CF Correct probability to 3sf (must	and $p = 0.05$. Do not allow $p = 0.95$ in context. Ignore extraneous non-contract $X \le 5$) with one correct probability pres 2 out of 2) in B(30, 0.05) or writing/using P($X \le 2$ es 2 out of 2) of 0.1301 or 0.8699 can imply this material <7) = awrt 0.13 or P($A > 6$) = awrt es of Po(10) or N(10, 9.5) = 10 and $\sigma^2 = 9.5$ leading to $n < 7.4$ = 0.14 / P($A \ge 7$) = 0.86 scores B0M0A use of p or π). Allow H ₀ : $p = 0.95$, H sing P($C \ge 4$) or if CR given P($C \ge$ R given P($D \le 20$) not go on and give incorrect CR) or con-	dicting commen 7) with B(30, 0 rk) 0.87 .can score M1 .0 $r_1: p < 0.95$ 3) using B(25, 0 rrect CR (ignore	ts. 0.95) 0.95) an e upper	al 14
(b) (c)(i) (ii) (d)	B1 M1 A1 M1 A1 B1 M1 A1cao Note: B1 M1	For either correct assumption in allow ${}^{30}C_6$ oe or $P(X \le 6) - P(X)$ awrt 0.0027 (correct answer score Writing/using $1 - P(Y \le 2)$ with awrt 0.188 (correct answer score Writing or using Po(10) (sight Allow P($A < n$) < 0.2 or P($A < n$ n = 7 which must come from us Use of normal approx. with $\mu =$ Exact binomial gives P($A \le 6$) = Both hypotheses correct (allow u Using B(25, 0.05) and writing/u writing/using P($D \le 21$) or if CF Correct probability to 3sf (must (dep on 1 st M1) A correct non-core	and $p = 0.05$. Do not allow $p = 0.95$ in context. Ignore extraneous non-contract $X \le 5$) with one correct probability pres 2 out of 2) in B(30, 0.05) or writing/using P($X \le 2$ es 2 out of 2) of 0.1301 or 0.8699 can imply this ma <7) = awrt 0.13 or P($A > 6$) = awrt es of Po(10) or N(10, 9.5) = 10 and $\sigma^2 = 9.5$ leading to $n < 7.4$ = 0.14 / P($A \ge 7$) = 0.86 scores B0M0A use of p or π). Allow H ₀ : $p = 0.95$, H sing P($C \ge 4$) or if CR given P($C \ge$ R given P($D \le 20$) not go on and give incorrect CR) or con- contextual statement (do not allow contraction in the statement (do not allow contraction)	dicting commen 7) with B(30, 0 rk) 0.87 .can score M1 .0 $f_1: p < 0.95$ 3) using B(25, 0 rrect CR (ignore adicting non-co	ts. 0.95) 0.95) an e upper i ntextual	al 14 d tail)
(b) (c)(i) (ii) (d)	B1 M1 A1 M1 A1 B1 M1 A1cao Note: B1 M1	For either correct assumption in allow ${}^{30}C_6$ oe or $P(X \le 6) - P(X)$ awrt 0.0027 (correct answer score Writing/using $1 - P(Y \le 2)$ with awrt 0.188 (correct answer score Writing or using Po(10) (sight Allow P($A < n$) < 0.2 or P($A < n$ n = 7 which must come from us Use of normal approx. with $\mu =$ Exact binomial gives P($A \le 6$) = Both hypotheses correct (allow the Using B(25, 0.05) and writing/using P($D \le 21$) or if CF Correct probability to 3sf (must (dep on 1 st M1) A correct non-co- comments) which is consistent w	and $p = 0.05$. Do not allow $p = 0.95$ in context. Ignore extraneous non-contract $X \le 5$) with one correct probability pres 2 out of 2) in B(30, 0.05) or writing/using P($X \le 2$ es 2 out of 2) of 0.1301 or 0.8699 can imply this material <7) = awrt 0.13 or P($A > 6$) = awrt es of Po(10) or N(10, 9.5) = 10 and $\sigma^2 = 9.5$ leading to $n < 7.4$ = 0.14 / P($A \ge 7$) = 0.86 scores B0M0A use of p or π). Allow H ₀ : $p = 0.95$, H sing P($C \ge 4$) or if CR given P($C \ge$ R given P($D \le 20$) not go on and give incorrect CR) or con-	dicting commen 7) with B(30, 0 rk) 0.87 .can score M1 .0 $_1: p < 0.95$ 3) using B(25, 0 rrect CR (ignore adicting non-co nay be implied 1	tts. (1.95) (1.95) an (1.95) an (1.9	al 14 d tail)

n Scheme				Marks	
1 - F(3.5)	b) = 1 - 0.97127		M1		
	= 0.028727	awrt 0.0287	A1		
				(2)	
$W \sim B(30, "0.0287")$					
1 - P(W)	$1 \le 1$ = 1 - $\left(\left(1 - "0.0287" \right)^{30} + {}^{30}C_1 \left("0.0287" \right)^1 \left(1 - "0.0287" \right)^{29} \right)$ oe		M1		
$= 1 - 0.78748 \dots = 0.2125 \dots$ awrt 0.213 to awrt 0.216			A1		
				(3)	
$\frac{\mathrm{dF}(w)}{\mathrm{d}w} =$	$=\frac{1}{3}\left(1-\frac{w^3}{64}\right)$		M 1		
$E(W^{2}) = \int_{0}^{4} \frac{1}{3} \left(w^{2} - \frac{w^{5}}{64} \right) dw = \frac{1}{3} \left[\frac{w^{3}}{3} - \frac{w^{6}}{384} \right]_{0}^{4}$		dM1			
$=\frac{32}{9}$			A1		
$Var(W) = \frac{32}{9} - 1.6^2$			M1		
$=\frac{224}{2}$		Δ1			
225			<u></u>		
				(5)	
			Total	10	
M1					
AI			<u> 29</u>		
M1	M1 For writing or using B(30, "0.0287") allow n ("their 0.0287") (1-"their 0.0287")				
	ignore any number for n (allow their p to 2sf)				
M1	For $1 - ((1 - "0.0287")^{30} + {}^{30}C_1 ("0.0287")^1 (1 - "0.0287")^{29})$ Allo	ow ${}^{30}C_{29}$ in an	y form		
A1	allow answer in the range awrt 0.213 to awrt 0.216				
M1	Differentiating $F(w)$ at least one term correct				
dM1 (Dep on previous M1). Attempting to integrate expanded $w^2 f(w)$. At least one $w^n \to w^{n+1}$ Ignore limits for this M mark.					
A1	awrt 3.56 must come from correct algebraic integration (may be	embedded)			
M1 Use of correct formula with values substituted. Must see the subtraction of 1.6^2					
A1 Dependent upon 2 nd M1 awrt 0.996					
(A correct answer with no algebraic integration seen may score M1M0A0M1A0)					
	$W \sim B(x) = 0$ $\frac{dF(w)}{dw} = 0$ $E(W^{2}) = 0$ $Var(W) = 0$ $M1$ $A1$ $M1$ $M1$ $A1$ $M1$ $M1$ $M1$ $M1$ $M1$ $M1$ $M1$ M	$1-F(3.5) = 1 - 0.97127 = 0.028727 = 0.028727 = 0.028727 = 0.028727 = 0.028727 = 0.02877)^{20} (0.0287")^{1} (1-"0.0287")^{20}) oe = 1 - 0.78748 = 0.2125 = awrt 0.213 tr \frac{dF(w)}{dw} = \frac{1}{3} \left(1 - \frac{w^{3}}{64}\right) E(W^{2}) = \int_{0}^{4} \frac{1}{3} \left(w^{2} - \frac{w^{5}}{64}\right) dw = \frac{1}{3} \left[\frac{w^{3}}{3} - \frac{w^{6}}{384}\right]_{0}^{4} = \frac{32}{9} Var(W) = \frac{32}{9} - 1.6^{2} = \frac{224}{225} War(W) = \frac{32}{9} - 1.6^{2} War(W) = \frac{32}{9} - 1.6^{2} HI = For writing or using 1 - F(3.5) Implied by correct answer and awrt 0.0287 MI = For writing or using B(30, "0.0287") allow n(" their 0.0287")^{1} (1 - "0.0287")^{29}) Allow = 1 - \left((1 - "0.0287")^{30} + \frac{30}{6}C_{1}("0.0287")^{1} (1 - "0.0287")^{29}\right) Allow = 1 - \left((1 - "0.0287")^{30} + \frac{30}{6}C_{1}("0.0287")^{1} (1 - "0.0287")^{29}\right) Allow = 1 - \left((1 - "0.0287")^{30} + \frac{30}{6}C_{1}("0.0287")^{1} (1 - "0.0287")^{29}\right) Allow = 1 - \left((1 - "0.0287")^{30} + \frac{30}{6}C_{1}("0.0287")^{1} (1 - "0.0287")^{29}\right) Allow = 1 - \left((1 - "0.0287")^{30} + \frac{30}{6}C_{1}("0.0287")^{1} (1 - "0.0287")^{29}\right) Allow = 1 - \left((1 - "0.0287")^{30} + \frac{30}{6}C_{1}("0.0287")^{1} (1 - "0.0287")^{29}\right) Allow = 1 - 0 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$	$\begin{aligned} 1-F(3.5) &= 1-0.97127 & \text{awrt } 0.0287 \\ &= 0.028727 & \text{awrt } 0.0287 \\ \hline \\ W &\sim B(30, "0.0287") \\ 1-P(W \leq 1) &= 1-\left(\left(1-"0.0287"\right)^{30} + {}^{30}C_{1}\left("0.0287"\right)^{1}\left(1-"0.0287"\right)^{29}\right) \text{oe} \\ &= 1-0.78748 &= 0.2125 & \text{awrt } 0.213 \text{ to awrt } 0.216 \\ \hline \\ \frac{dF(w)}{dw} &= \frac{1}{3}\left(1-\frac{w^{3}}{64}\right) \\ E(W^{2}) &= \int_{0}^{4} \frac{1}{3}\left(w^{2} - \frac{w^{5}}{64}\right) dw \\ &= \frac{32}{9} \\ \hline \\ Var(W) &= \frac{32}{9} - 1.6^{2} \\ &= \frac{224}{225} \\ \hline \\ \hline \\ \hline \\ \hline \\ M1 & For writing or using 1 - F(3.5) & Implied by correct answer \\ A1 & awrt 0.0287 \\ \hline \\ M1 & For writing or using B(30, "0.0287") allow n(" their 0.0287")^{1}(1-" their 0.0287")^{1}(1-" their 0.0287")^{10} \\ M1 & For 1 - \left(\left(1-"0.0287"\right)^{30} + {}^{30}C_{1}("0.0287")^{1}(1-"0.0287")^{29}\right) \text{ Allow } {}^{30}C_{29} \text{ in an } \\ A1 & allow answer in the range awrt 0.213 to awrt 0.216 \\ \hline \\ M1 & Differentiating F(w) at least one term correct \\ dM1 & Differentiating F(w) at least one term correct \\ M1 & Use of correct formula with values substituted. Must see the subtraction of 1.6 \\ \hline \\ A1 & awrt 3.56 must come from correct algebraic integration (may be embedded) \\ Use of correct formula with values substituted. Must see the subtraction of 1.6 \\ \hline \\ A1 & Dependent upon 2^{nd} M1 awrt 0.996 \\ \hline \end{aligned}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

Question Number	Scheme		
3(a)	$P(X \neq 4)$	4) = 1 - P(X = 4) oe $\left(=1-\frac{e^{-7}7^4}{4!}$ or $1-(0.1730-0.0818)\right)$	M1
			909 A1
		= 0.90877 awrt 0.	(2)
(b)	$\mathbf{P}(\mathbf{V}-1)$	$=(1-"0.90877")("0.90877")^4 \times {}^5C_1$	M1M1
(0)	1(1-1)		
		= 0.311	A1 (3)
(c)(i)	$\lambda = 0.0$	17 n	B1
(C)(I)		07 <i>n</i> , 0.07 <i>n</i>)	M1
	3.5-"0.07		
	$\sqrt{0.07n}$		M1
	$\frac{3.5-0.0^{\circ}}{\sqrt{0.07n}}$	$\frac{7n}{n} = -1.55 \text{or} "0.07n" - (1.55\sqrt{0.07})\sqrt{n} - 3.5 = 0$	B1
	$n - \left(\frac{1.5}{0.0}\right)$	$\frac{5}{7}\sqrt{0.07}\left(\sqrt{n} - \frac{3.5}{0.07}\right) = 0 \Rightarrow n - 1.55\sqrt{\frac{n}{0.07}} - 50 = 0$	A1cso
			(5)
(ii)	$\sqrt{n} = \frac{\frac{1.2}{\sqrt{0.2}}}{\frac{1}{\sqrt{0.2}}}$	$\frac{55}{.07} \pm \sqrt{\left(\frac{1.55}{\sqrt{0.07}}\right)^2 + 4 \times 50}}_{2} = \text{awrt} - 4.72 \text{ or awrt } 10.6 (4\sqrt{7})$	M1
	<i>n</i> = 112		A1cao
			(2)
(d)	$H_0: \lambda =$	$= 7 H_1: \lambda > 7$	B1
	$P(X \ge 1)$	$P(X \ge 14) = 0.0128$	M1
		$= 1 - 0.9943$ $P(X \ge 15) = 0.0057$	
		$= 0.0057$ CR $X \ge 15$	A1
	Reject F	H ₀ , in the CR, Significant	dM1
	0	s evidence that the number of water fleas per 100 ml of the pond water has increase	
			(5)
			Total 17
	I	Notes	
(a)	3.4.1		
(b)	M1	For $1 - P(X = 4)$ or $1 - P(X \le 4) + P(X \le 3)$ oe	
(b)	M1 M1	For $1 - P(X = 4)$ or $1 - P(X \le 4) + P(X \le 3)$ oe $(1 - "their 0.909")^4 ("their 0.909") \text{ or } (1 - "their 0.909") ("their 0.909")^4$ allow their values to 2	2s.f.
(b)		$(1 - " \text{ their } 0.909")^4$ ("their 0.909") or $(1 - " \text{ their } 0.909")$ ("their 0.909") ⁴ allow their values to 2	2s.f.
(b)	M1		2s.f.
(b) (c)(i)	M1 M1	$(1 - " \text{ their } 0.909")^4$ ("their 0.909") or $(1 - " \text{ their } 0.909")$ ("their 0.909") ⁴ allow their values to 2 P(Y = 1) = $(1 - " \text{ their } 0.909")$ ("their 0.909") ⁴ × ⁵ C ₁ allow their values to 2s.f. awrt 0.312 or awrt 0.311 Writing or using mean as 0.07 <i>n</i>	
	M1 M1 A1 B1 M1	$(1 - " \text{ their } 0.909")^4$ ("their $0.909"$) or $(1 - " \text{ their } 0.909")$ ("their $0.909")^4$ allow their values to 2 $P(Y = 1) = (1 - " \text{ their } 0.909")$ ("their $0.909")^4 \times {}^5C_1$ allow their values to 2s.f. awrt 0.312 or awrt 0.311 Writing or using mean as $0.07n$ Normal with the mean = variance which must be in terms of n (may be implied by correct	standardisation).
	M1 M1 A1 B1	$(1 - " \text{ their } 0.909")^4$ ("their $0.909"$) or $(1 - " \text{ their } 0.909")$ ("their $0.909")^4$ allow their values to 2 P(Y = 1) = $(1 - " \text{ their } 0.909")$ ("their $0.909")^4 \times {}^5C_1$ allow their values to 2s.f. awrt 0.312 or awrt 0.311 Writing or using mean as $0.07n$ Normal with the mean = variance which must be in terms of <i>n</i> (may be implied by correct Standardising with their mean and their $\sqrt{\text{var}}$. If not stated they must be correct. Allow 2.5	standardisation).
	M1 M1 A1 B1 M1 M1	$(1 - " \text{ their } 0.909")^4$ ("their $0.909"$) or $(1 - " \text{ their } 0.909")$ ("their $0.909")^4$ allow their values to 2 P(Y=1) = $(1 - " \text{ their } 0.909")$ ("their $0.909")^4 \times {}^5C_1$ allow their values to 2s.f. awrt 0.312 or awrt 0.311 Writing or using mean as $0.07n$ Normal with the mean = variance which must be in terms of <i>n</i> (may be implied by correct Standardising with their mean and their $\sqrt{\text{var}}$. If not stated they must be correct. Allow 2.5 correct standardisation implies B1M1M1)	standardisation).
	M1 M1 A1 B1 M1 M1 B1	$(1 - " \text{ their } 0.909")^4$ ("their $0.909"$) or $(1 - " \text{ their } 0.909")$ ("their $0.909")^4$ allow their values to 2 $P(Y = 1) = (1 - " \text{ their } 0.909")$ ("their $0.909")^4 \times {}^5C_1$ allow their values to 2s.f. awrt 0.312 or awrt 0.311 Writing or using mean as $0.07n$ Normal with the mean = variance which must be in terms of <i>n</i> (may be implied by correct Standardising with their mean and their \sqrt{var} . If not stated they must be correct. Allow 2.5 correct standardisation implies B1M1M1) Their standardisation = ± 1.55	standardisation). 5, 3, 3.5,4, 4.5 (A
	M1 M1 A1 B1 M1 M1	$(1 - " \text{ their } 0.909")^4$ ("their $0.909"$) or $(1 - " \text{ their } 0.909")$ ("their $0.909")^4$ allow their values to 2 P(Y=1) = $(1 - " \text{ their } 0.909")$ ("their $0.909")^4 \times {}^5C_1$ allow their values to 2s.f. awrt 0.312 or awrt 0.311 Writing or using mean as $0.07n$ Normal with the mean = variance which must be in terms of <i>n</i> (may be implied by correct Standardising with their mean and their $\sqrt{\text{var}}$. If not stated they must be correct. Allow 2.5 correct standardisation implies B1M1M1)	standardisation). 5, 3, 3.5,4, 4.5 (A
	M1 M1 A1 B1 M1 M1 B1	$(1 - " \text{ their } 0.909")^4$ ("their $0.909"$) or $(1 - " \text{ their } 0.909")$ ("their $0.909")^4$ allow their values to 2 $P(Y = 1) = (1 - " \text{ their } 0.909")$ ("their $0.909")^4 \times {}^5C_1$ allow their values to 2s.f. awrt 0.312 or awrt 0.311 Writing or using mean as $0.07n$ Normal with the mean = variance which must be in terms of <i>n</i> (may be implied by correct Standardising with their mean and their \sqrt{var} . If not stated they must be correct. Allow 2.5 correct standardisation implies B1M1M1) Their standardisation = ± 1.55 Must come from compatible signs in standardisation. Need at least one step between stand indicating division by 0.07 and correct equation. Correct method to solve given quadratic <u>or</u> sight of awrt -4.72 or awrt 10.6	standardisation). 5, 3, 3.5,4, 4.5 (A
(c)(i) (ii)	M1 M1 A1 B1 M1 M1 B1 A1cso M1 A1cao	$(1 - " \text{ their } 0.909")^4$ ("their $0.909"$) or $(1 - " \text{ their } 0.909")$ ("their $0.909")^4$ allow their values to 2 $P(Y=1) = (1 - " \text{ their } 0.909")$ ("their $0.909")^4 \times {}^5C_1$ allow their values to 2s.f. awrt 0.312 or awrt 0.311 Writing or using mean as $0.07n$ Normal with the mean = variance which must be in terms of <i>n</i> (may be implied by correct Standardising with their mean and their \sqrt{var} . If not stated they must be correct. Allow 2.5 correct standardisation implies B1M1M1) Their standardisation = ± 1.55 Must come from compatible signs in standardisation. Need at least one step between stand indicating division by 0.07 and correct equation. Correct method to solve given quadratic <u>or</u> sight of awrt -4.72 or awrt 10.6 112 only (must reject 2nd answer if found) (an answer of 112 only scores M1A1)	standardisation). 5, 3, 3.5,4, 4.5 (A
(c)(i)	M1 M1 A1 B1 M1 M1 B1 A1cso M1	$(1 - " \text{ their } 0.909")^4$ ("their $0.909"$) or $(1 - " \text{ their } 0.909")$ ("their $0.909")^4$ allow their values to 2 $P(Y = 1) = (1 - " \text{ their } 0.909")$ ("their $0.909")^4 \times {}^5C_1$ allow their values to 2s.f. awrt 0.312 or awrt 0.311 Writing or using mean as $0.07n$ Normal with the mean = variance which must be in terms of <i>n</i> (may be implied by correct Standardising with their mean and their \sqrt{var} . If not stated they must be correct. Allow 2.5 correct standardisation implies B1M1M1) Their standardisation = ± 1.55 Must come from compatible signs in standardisation. Need at least one step between stand indicating division by 0.07 and correct equation. Correct method to solve given quadratic <u>or</u> sight of awrt -4.72 or awrt 10.6 112 only (must reject 2nd answer if found) (an answer of 112 only scores M1A1) Both hypotheses correct in terms of λ or μ [using <i>p</i> scores B0]	standardisation). 5, 3, 3.5,4, 4.5 (A
(c)(i) (ii)	M1 M1 A1 B1 M1 M1 B1 A1cso M1 A1cao B1 M1	$(1 - " \text{ their } 0.909")^4$ ("their $0.909"$) or $(1 - " \text{ their } 0.909")$ ("their $0.909")^4$ allow their values to 2 $P(Y = 1) = (1 - " \text{ their } 0.909")$ ("their $0.909")^4 \times {}^5C_1$ allow their values to 2s.f. awrt 0.312 or awrt 0.311 Writing or using mean as $0.07n$ Normal with the mean = variance which must be in terms of <i>n</i> (may be implied by correct Standardising with their mean and their \sqrt{var} . If not stated they must be correct. Allow 2.5 correct standardisation implies B1M1M1) Their standardisation = ± 1.55 Must come from compatible signs in standardisation. Need at least one step between stand indicating division by 0.07 and correct equation. Correct method to solve given quadratic <u>or</u> sight of awrt -4.72 or awrt 10.6 112 only (must reject 2nd answer if found) (an answer of 112 only scores M1A1) Both hypotheses correct in terms of λ or μ [using <i>p</i> scores B0] For $1 - P(X \le 14)$ or for CR: one of $P(X \ge 14) = 0.0128$ or $P(X \ge 15) = 0.0057$	standardisation). 5, 3, 3.5,4, 4.5 (A
(c)(i) (ii)	M1 M1 A1 B1 M1 M1 B1 A1cso M1 A1cao B1	$(1 - " their 0.909")^4$ ("their 0.909") or $(1 - " their 0.909")$ ("their 0.909") ⁴ allow their values to 2 P(Y=1) = $(1 - " their 0.909")$ ("their 0.909") ⁴ × 5C_1 allow their values to 2s.f. awrt 0.312 or awrt 0.311 Writing or using mean as 0.07 <i>n</i> Normal with the mean = variance which must be in terms of <i>n</i> (may be implied by correct Standardising with their mean and their \sqrt{var} . If not stated they must be correct. Allow 2.5 correct standardisation implies B1M1M1) Their standardisation = ± 1.55 Must come from compatible signs in standardisation. Need at least one step between stand indicating division by 0.07 and correct equation. Correct method to solve given quadratic <u>or</u> sight of awrt -4.72 or awrt 10.6 112 only (must reject 2nd answer if found) (an answer of 112 only scores M1A1) Both hypotheses correct in terms of λ or μ [using <i>p</i> scores B0] For $1 - P(X \le 14)$ or for CR: one of $P(X \ge 14) = 0.0128$ or $P(X \ge 15) = 0.0057$ awrt 0.0057 or correct CR allow $X > 14$	standardisation). 5, 3, 3.5,4, 4.5 (A ardisation
(c)(i) (ii)	M1 M1 A1 B1 M1 M1 B1 A1cso M1 A1cao B1 M1	$(1 - " \text{ their } 0.909")^4$ ("their $0.909"$) or $(1 - " \text{ their } 0.909")$ ("their $0.909")^4$ allow their values to 2 $P(Y = 1) = (1 - " \text{ their } 0.909")$ ("their $0.909")^4 \times {}^5C_1$ allow their values to 2s.f. awrt 0.312 or awrt 0.311 Writing or using mean as $0.07n$ Normal with the mean = variance which must be in terms of <i>n</i> (may be implied by correct Standardising with their mean and their \sqrt{var} . If not stated they must be correct. Allow 2.5 correct standardisation implies B1M1M1) Their standardisation = ± 1.55 Must come from compatible signs in standardisation. Need at least one step between stand indicating division by 0.07 and correct equation. Correct method to solve given quadratic <u>or</u> sight of awrt -4.72 or awrt 10.6 112 only (must reject 2nd answer if found) (an answer of 112 only scores M1A1) Both hypotheses correct in terms of λ or μ [using <i>p</i> scores B0] For $1 - P(X \le 14)$ or for CR: one of $P(X \ge 14) = 0.0128$ or $P(X \ge 15) = 0.0057$	standardisation). 5, 3, 3.5,4, 4.5 (A ardisation

		Scheme		Marks
4(a)		$(x)^{2} dx = \left[k \left(a^{2}x - ax^{2} + \frac{x^{3}}{3} \right) \right]_{0}^{a} \text{ or } \left[\frac{-k(a-x)^{3}}{3} \right]_{0}^{a}$	$\begin{bmatrix} a \\ b \end{bmatrix}_{0}^{a}$	M1 A1
	$k\left(a^3-a^3-a^3-a^3-a^3-a^3-a^3-a^3-a^3-a^3-$	$\left(a^3 + \frac{a^3}{3}\right) = 1$ or $\frac{ka^3}{3} = 1$ $\Rightarrow ka^3 = 3$		A1 cso
				(3)
(b)	$\int_0^a kx (a \cdot$	$(-x)^{2} dx = \left[k \left(\frac{a^{2}x^{2}}{2} - \frac{2ax^{3}}{3} + \frac{x^{4}}{4} \right) \right]_{0}^{a} \text{ or } \left[\frac{-k}{2} \right]_{0}^{a}$	$\frac{kx(a-x)^{3}}{3} + \frac{k(a-x)^{4}}{12} \bigg]_{0}^{a}$	M1A1
	$k\left(\frac{a^{2}a^{2}}{2} - \frac{2aa^{3}}{3} + \frac{a^{4}}{4}\right) = 1.5 \text{or} \left[\frac{ka(a)^{3}}{3} - \frac{k(a)^{4}}{12}\right]_{0}^{a} = 1.5 \text{or} ka^{4} = 18 \text{oe}$		dM1	
	$\frac{ka^4}{ka^3} = 6$	or $\frac{18}{3} = 6$ [: <i>a</i> = 6]		A1cso
				(4)
(c)	F(x) =	$\frac{1}{72} \left(36x - 6x^2 + \frac{x^3}{3} \right)$	$\frac{1}{72} \left(36x - 6x^2 + \frac{x^3}{3} \right) = 0.5 \text{ oe}$	M1
	F(1.15)(= 0.47) and $F(1.25) (= 0.5038)$	1.2377	M1
	(0.47(18	= awrt 0.47, $F(1.25)$ = awrt 0.504) < 0.5 < 0.503(8)) therefore the is 1.2 to 1 decimal place.	therefore the median is 1.2 to 1 decimal place.	A1
		I		(2)
				(3)
		Notes		
(a)	M1	Notes Integrating $f(x)$ at least 1 term correct. For M	I1 allow $\frac{\pm k(a-x)^3}{3}$	
(a)	A1		11 allow $\frac{\pm k(a-x)^3}{3}$	
	A1 A1cso	Integrating f(x) at least 1 term correct. For M Correct integration (ignore limits) Substitute limits and equating to 1 to form one	expression in terms of k and a leading	Total 10
(a) (b)	A1 A1cso M1	Integrating $f(x)$ at least 1 term correct. For MCorrect integration (ignore limits)Substitute limits and equating to 1 to form oneIndicating that they are integrating $xf(x)$ with	expression in terms of k and a leading	Total 10
	A1 A1cso	Integrating $f(x)$ at least 1 term correct. For MCorrect integration (ignore limits)Substitute limits and equating to 1 to form oneIndicating that they are integrating $xf(x)$ withCorrect integration	expression in terms of k and a leading an attempt at integrating $x^n \rightarrow x^{n+1}$	Total 10 g to $ka^3 = 3$
	A1 A1cso M1	Integrating $f(x)$ at least 1 term correct. For MCorrect integration (ignore limits)Substitute limits and equating to 1 to form oneIndicating that they are integrating $xf(x)$ withCorrect integration(dep on previous M1). Substitute limits and equation	expression in terms of k and a leading an attempt at integrating $x^n \rightarrow x^{n+1}$	Total 10 g to $ka^3 = 3$
	A1 A1cso M1 A1	Integrating $f(x)$ at least 1 term correct. For MCorrect integration (ignore limits)Substitute limits and equating to 1 to form oneIndicating that they are integrating $xf(x)$ withCorrect integration	expression in terms of k and a leading an attempt at integrating $x^n \rightarrow x^{n+1}$ uating to 1.5 to form a 2 nd expression	Total 10 g to $ka^3 = 3$
	A1 A1cso M1 A1 dM1	Integrating $f(x)$ at least 1 term correct. For MCorrect integration (ignore limits)Substitute limits and equating to 1 to form oneIndicating that they are integrating $xf(x)$ withCorrect integration(dep on previous M1). Substitute limits and eqk and aCorrect method shown to solve their 2 equatioFinding correct $F(x)$. Allow $F(x) = 1 - \frac{(6-x)}{216}$	expression in terms of k and a leading an attempt at integrating $x^n \rightarrow x^{n+1}$ uating to 1.5 to form a 2 nd expression ns to eliminate k and show $a=6$	
(b)	A1 A1cso M1 A1 dM1 A1cso	Integrating $f(x)$ at least 1 term correct. For MCorrect integration (ignore limits)Substitute limits and equating to 1 to form oneIndicating that they are integrating $xf(x)$ withCorrect integration(dep on previous M1). Substitute limits and eq k and a Correct method shown to solve their 2 equation	expression in terms of k and a leading an attempt at integrating $x^n \rightarrow x^{n+1}$ uating to 1.5 to form a 2 nd expression ns to eliminate k and show $a=6$ $\frac{3}{216}$ but $F(x) = \frac{(6-x)^3}{216}$ is M0	Total 10 g to $ka^3 = 3$ in terms of

Question Number		Scheme		Marks	
5(a)	U[0, 3]		M1	
		$\frac{3}{3} = 0.4$		A1	
	3			(2)	
(b)	$X^2 = W^2$	$(3-W)^2$		M1	
	$X^{2} = W^{2} + 9 + W^{2} - 6W \implies X^{2} = 2W^{2} - 6W + 9$			A1	
				(2)	
(c)	$\mathbf{E}(W) = 1$			B1	
	Var(W) =	$=\frac{9}{12}=\frac{3}{4}$		B1	
	E (U /2)	$= \frac{9}{12} = \frac{3}{4}$ $"\frac{3}{4}" + "1.5"^{2}$			
				M1	
	$E(W^2) =$			A1	
	So E(X	$(2) = 2 \times (3) - 6 \times (1.5) + 9 = 6$		M1A1	
	$\mathbf{D}(\mathbf{W}^2)$	(2) $D(2)$ (2)		(6)	
(d)	$P(X^2 >$	$5) = P(2W^2 - 6W + 4 > 0)$		M1	
		= P((2W-2)(W-2) > 0)		M1	
		= P(W > 2) + P(W < 1)		dM1	
	$=\frac{2}{3}$ oe			A1	
	3			(4)	
				Total 14	
()	Notes				
(a)	M1	Writing or using the correct distribut	ion Allow: $\frac{1.8}{3}$ for M1A0		
	A1	0.4 oe			
(b)	M1	Using Pythagoras to find the length Note: $X^2 = W^2 + (W - 3)^2$ scores M1A0			
	A1	A1 Brackets multiplied seen leading to $X^2 = 2W^2 - 6W + 9$ with no incorrect working			
(c)	B1	1.5	3 .		
	B1	Var(W) = 0.75	Using integration: $E(W^2) = \int_{0}^{3} \frac{1}{3} w^2 dw$	(ignore limits)	
	M1	Writing or using $E(W^2) = Var(W) + [E(W)]^2$	$\left[\frac{1}{9}w^3\right]_0^3$ (correct integration with cor	rect limits)	
	A1	3			
	M1				
	A1				
(d)	M1	For realising they need to find the pr	obability of $2W^2 - 6W + 4 > 0$ (condone =)		
	M1 Solving their 3-term quadratic ($W = 1$ and $W = 2$ implies 1 st two M marks)				
	dM1 (dep on 2 nd M1) Realising they need to add the 2 outer areas				
	A1 awrt 0.667				

Question Number		Scheme	Marks			
6(a)	Taking a random sample is quicker/cheaper/easier (compared to asking all of the youth club members).					
(b)	A list/rea	sister/database of all the youth club members	(1) B1			
(0)	A <u>IISUIC</u>	<u>ister/database</u> of <u>an</u> the youth club <u>members</u>	D 1 (1)			
(c)	The men	<u>ibers</u>	B1			
	25		(1)			
(d)	$p^2 = \frac{25}{64}$		M1			
	$p = \frac{5}{8}$		A1			
	" $\frac{5}{8}$ " + q + r = 1 or $2qr = \frac{1}{16}$ or $\frac{25}{64} + 2$ " $\frac{5}{8}$ "q + 2" $\frac{5}{8}$ "r + q ² + $\frac{1}{16}$ + r ² = 1					
	Any two	equations from above	B1			
	$\frac{3}{8}q - q^2 =$	$=\frac{1}{32}$	dM1			
	$q = \frac{1}{4}$		A1			
	$P(M = 50) = \frac{1}{4} \times \frac{1}{4} = \frac{1}{16} $ *					
			(7 Total 10			
	Dí	Notes				
(a) (b)	B1 B1	Any one of the given reasons. Ignore extraneous non-contradictory reasons. Idea of list(oe). Need all (oe) (eg complete list) and members.				
(c)	B1	The members/a member				
(d)	M1 Correct method, may be implied					
	A1	$p = \frac{5}{8}$ or $P(X = 20) = \frac{5}{8}$				
	B 1	One equation in q and r from use of $p + q + r = 1$, $P(M = 60)$ or $\sum P(M=m) = 1$ see Note (allow ft on their value of p)				
	B1	Two correct equations in q and r Some will substitute directly into the third equation so may see: $\frac{25}{64} + \frac{5}{4}q + \frac{5}{128q} + q^2 + \frac{1}{16} + \frac{1}{1024q^2} = 1$ which is correct and scores B1B1				
	dM1	(dep on 1 st B1) Correct method to solve simultaneous equation leading to a probabilit (may be implied by $q = \frac{1}{4}$ or $r = \frac{1}{8}$ provided B1B1 scored)	eading to a probability for q or r			
	A1	Correct probability for q (dependent on all previous marks in part (d))				
	A1cso*					
	Note:	m 20 35 45 50 60 70				
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
		$\frac{25}{64} + 2pq + 2pr + q^2 + \frac{1}{16} + r^2 = 1$				